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The Representatioon of A Class of Two State Stationary Processes
*

in Terms of Independent Random Variables.

by M. Rosenblatt

Introduction. Consider a stationary random process

fXn;n=O,+l,...J. It has recently been of some interest to find

conditions on (X] such that one can construct a process [Yn) with

the same probability structure as [Xn) on the space of independent

identically distributed random variables Rn I (say uniformly

distributed on [O,i]) by a Borel function f( o,_l,...) -

(and its shifts, that is,

=n f(Tn1E)s n-0O,±J,...*()

Here f is to be a function of oEl,'... and T is the shift

operator. It can be shown that a necessary condition is that

[xn) be purely nondeterministic or regular (in the terminology of

A. N. Kolmogorov)[ 5 I. In fact it has been shown that the neces-

sary and sufficient condition for such a representation in the

case ct a countable state Markov chain is that it be regular [6 6.

Most of the sufficient conditions for such a representation in

the case of a continuous state Markov process contain something

reminiscent of a Doeblin condition [2 ]. We explicitly mention

and state an interesting sufficient condition of this type

obtained recently by Hanson:

(i) ) In s a stationary regular Markov process
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(ii) There exist Bonl sets AB of the state space

and a nonnegative measure 0 on the state space such that

T(B) > 0 (f is the stationary measure induced by the process on

the state space), O(A) > 0 and for all xEB and A$CA the transi-

tion measure

P(x,A,) >%(A'). (2)

It is clear that it would be extremely interesting to

investigate a class of processes which would not satisfy a

Doeblin-like condition even when they are imbedded naturally in

a Markov process. The two state stationary regular processes

are such a class. Moreover these processes are of considerable

interest in their own right, particularly in communication

problems.

Much of this paper will concern itself with a reinter-

pretation of results of Doeblin and Fortet [1 ] and Harris [ 3]

with respect to such a representation.

Preliminaries. Since we will imbed the two state processes in

Markov processes in a natural way, it will be reasonable to give

a sufficient condition for a representation of type (1) for

Markov processes. Let [(Yn-O,±l,...) be a stationary Markov

process. We can Just as well assume the moment EI~ I exists

since a nonlinear instantaneous tranaCs'mation can effect this.

Further assume there is a secuence of independent random variables

SuniformIr distributed on [0,1] withn,n+l,... independent

Of Ynsyn-1,... ard a family of transformations T (.)(with T (y)
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a Borel function of (Ey)) such that T(Yn) - n+ with

probability one. One can then prove the following theorem just

as in [5 ].

Theorem 1. There is a representation of type (I) for fYn)
in terms of the (En) process if and only if there is a set S of

yl points of measure one such that

T T nl T ly1 - Tn Tn .&GTOy 1 --- )>0 (3)

in •l'""•n'" measure for all y1 ,ylCS as n -- > 00

Our object is to study stationary processes with two

states, say 0 and 1. We shall now imbed such a process in a

Markov process following Harris. If we let Yn = (XnsXn-ii**)

the new process [ Yn;n=O,+_l,..J. is a stationary Markov process

where the kth coordinate of the Yn vector (YYn) = XnklThe points
k

y are halfway infinite sequences of zeros and ones. The Borel

field is generated by sets of the form (y) = xk. The transition
k

function is essentially given by

0(y) = P[Xn+i = lI(Xhx•nl,...) Y (4)

which can be taken as a Borel function in y. If we set

Z Lo X, +(5)

a real number z, 0 S z < 1, is obtained. All real numbers z

have a unique binary representation except for those which have

a finite binary expansion. These have two binary expansions,

either with a final infinite sequence of zeros ... 1000... or



a final infinite sequence of ones ... 0111... . However, the set

of these numbers is countable. All points of this type must have

measure zero because of the stationarity of the measure except

possibly for .000... or .111.... We can therefore adopt Harris'

convention in which the binary expansion of 1 is taken as .11l...

and in all other ambiguous cases the expansion terminating in

zeros is preferred to that terminating in 1's. The random

vectors Yn will be identified with the real numbers given by the

binary expansion ( 5) subject to the convention adopted above.

Thus the Markov process [Yn) is to be regarded as one with state

space the real numbers y, O S y < I, and transition mechanism

l-PfYn~l -- Yy,' -y] - -0yjP7Y) = y -+1 -2 2Yyn yj. (6)

A regularity condition on the transition function O(y)

due to Doeblin and Fortet [' ] is now described. We use the

notation (xEy)m to mean that the first m digits in the binary

expansion of x are the same as those in y. Let

Note that the em are a monotone sequence of numbers. The condi-

tion introduced by Doeblin and Fortet is

Ee <0. (8)
m

We shall assume either

O(y) > 0 0 < x < l (9)
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or
1-0(y) > A > 0 0 _S x _< 1.

Notice that (9) implies that e < 1.

Some Results on Convergence. We shall first give in some detail

a theorem due to Harris. It Is given in detail because Harris

Just briefly gave a sketch of the proof and it does play a basic

role in the development of one of our results. The method is

related to an idea. of Doeblin.

Let •i' 2,... be independent random variables uniformly

distributed on [0,1]. Define the processes Yn-- Yn(Y),
!Y " Yn y ' ' 0 j y_.y y ' < .1i, as follows . Let YI " y I y

Yn~ ~ ~ nJ-Y- J
I!

and given Yn'yn

if >A

with the corresponding representation of Yl in terms of Yn

and n

Theorem 2. If conditions (8) and (9 ) are satisfied then

P(Iyn-yn'l > e) --) o 01
for each fixed a > 0 as n -> oo uniformly in ,y'.

Let Uni (Ut e If Yn+l - ('+Y)/2 (if Yn-l - (i+7n)/2).

Then
t~n#Unl Yn,'Yn) Si I O(Yn -O(yn)1 (1.2)
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We first want to show that almost every pair of sequences [Y,

Y,') (both generated by the tn'a) have a k-tuple of U coincidencest I

(U mUm,...) with probability one. This follows by

contradiction in the following manner. Suppose this is not the

case. Then there is a set A (of t sequences) of positive

probability with no k-tuple of U coincidences. For large enough

n there is a set Ane A CAn, with P(An) < (1+4)P(A) (b > O) that

is measurable with respect to the Borel field generated by

t0''"ptn" 0Let

"Bkn 1Un . (13)

Then

P(AnrlBk,,n) (14i)

- I P[~ ~ IdP
An

But then

P(AABk~n) "P(AnfBk n) - P((An-A)nBk) (15)

_ (1-e0).. (1- k)P(An) - bP(A) > 0

if b is sufficiently small leading to a contradiction. Of

course, this arguent is valid for every finite k.

Let Cm be the set of t sequences for which the first

k-tuple of U coincidences ocours (and starts) at m. Then the
00

C. are disjoint and Z P(Cm) - 1 by the argument of the previousm-1
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paragraph. Given any fixed 6 > 0, for sufficiently large n

n
E P(Cmr) > 1-b . (16)

m-i

Note that we will have IYnASYn+A-Y+/,_ < e if I is such that 2"1 < 6

and we have I successive U coincidences U I Un U =
Un n''' Un .. L%-l

Un+,_1. Thus if I > k

P(Jcn+i-yn+.J < e) (17)
n

M0- P(Cn {Um+k - Umk, . .. ,Un+J - un•+,)

> 11 (1-6) - P(C,,) > (1-6) 1 (i-eQ

by inequality (15). If k is sufficiently large and 6 small

enough this will be close to one since Ee j < co. Thus given any

e >O00POYn~-Ynl > e) -> 0 as n---)ouniformly in yy.

The following corollary was of primary interest to

Harris.

Corollary. Under conditions (8) and ( )

Fn(zly) - P(Yn-< ziYI - y) - (z) (18)

= formly =n y as n -- oo. G(z) is the one and only stationary

distribution for the Yn process.

For a given y one can find a sequence ni such that

FnI (-ly) -4 G(zly) (19)

weakly. From (11) it follows that F n(zly') -4G(zly) weakly

independently of y' and hence G(zuy) - G(z) is independent of y.
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Further the convergence is strict at continuity points z of G(z).

Given any e > 0 for a given continuity point z there is a value

of n sufficiently large so that for n, > n

IPn,(zly) - G(Z)1 < e (20)

independently of y. Then

%n(ZIY) mfFn (zIy')dFn~n (y'Iy) (21)

and hence Fn(zly) -> G(z) uniformly in y as n -> co. If

0(1) - l(%(o)-o)G(z) must have a jump of magnitude 1 at 1(o).
If this is not the case one can show the limit distribution G

is continuous. Let 00 (y) 1-0(y), 01 (y) = 6(y). It is clear

that
12zai.j

""oo(zly) f %(')d(y'). (22)

Because of the regularity condition (8 ) we can go to the limit

and obtain
1 2z-j

.J- o Zf j()do(y). (23)

an equation that any stationary distribution for the Yn process

must satisfy. The uniqueness of the stationary distribution G

is obvious.

We also mention an interesting result due to Karlin [ 41 •.

Theorem 3 (Karlin). If the function 0 Is monotone with

I%(x)-O(y)l _. c 1 (24)

then
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Pn(z•y) - P(Yn S zlY 1,-y) - G(z)

where G is independent of y as n -> o0.

Almost as an iimediate result of Karlin's theorem we

have the following result

Theorem 4. If the function i is monotone with (24) satisfied

then

P(IYn- Yn' > 0) - 0

for (.ach e >0 as n -- co for all yy'.

We shall assume % monotone nondecreasing since the case

of % monotone nonincreasing can be reduced to this by inter-

changing O's and i ts in the original X. process. Further let us

take O(O)pAO, .(1)ýl since otherwise we are In the trivial situa-

tion in which G(z) has a Jump of magnitude 1 at 0 or i. We have

already remarked that then G must be continuous. Consider the

transformations Tt(y)* 0 t e < 1, as given by (10), that is

2E(y) - (25)

All the functions ; (.) are monotone nondecreasing since $(y)

is monotone nondecreasing. Hence# given any y,yt with

0• < y <Yl0<¥<¥ T( y ) 26

f'or. all 0, o .E. 1. Thsi Y' M -C Tn] •.Yp
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Y Tn - TTn_1 "" TlY' with y S y' it follows that Y. > Yn. However,

we know that -•n Yn have a common limiting distribution G(z) which

is continuous . But

P'n> zy~ < Z) + Pln z - plyý < z) (7

so that

PfY > ZYn _< z 0o (28)

at every poinst z as n -- > Oo. Given any e > 0 one can find k(e)

points zI < z . < ... < zk such that

LJ Yn S ZjoYn > z,) D lyn Yn > P 1.

It therefore N0ol1ows that P[Yn-Yn > ol -> 0 for every e > 0 as

-4 00 and hemnce Yn-n -- ), 0 in probability as n ---> 00. This

has been earrUXed out for any two points y,y' with y < y'. How-

ever, given ar-ny two points yy' we can find a third point y"

(assuming bott-a y,y' > 0) such that y" < yy' and therefore

Yn-Yn 0 ae3 n -coo for all y,y'.

Representatiorm of 0-1 Processes. We now briefly state and prove

the main resuL t.

Theorems. Let= Yn;n-O,±l, ... ) be a stationary two state process

(states 0 and 1) with transition function 0(y) satisfving either

(8) ad (9) orx monotone with (24). There iB then a sequence of

indop2 ent rmandom variables f n uniformly distributed on [Ol]

such that rYn* has the one-sided representation (1) in terms of

Lhe ý.
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It is clear that there is a stationary process satisfy-

ing either conditions (8) and (9) or (24) by the argument of

the corollary in either of these cases. Further the probability

structure of such a stationary process is uniquely determined by

the transition function 0(y). Let [Yn;n-O,_±l, ... I be such a

stationary process. Given the {Yn) process let [nn•O,_1,...1

be a sequence of independent random variables uniformly distributed

on (0,1] and independent of the (Y.) process. We shall now

construct a sequence of independent random Variables Rd

uniformly distributed on [0,1] that satisfy the assumptions of

Theorem 1. Of course the rYn) sequence and Rdn) sequence will

be dependent. Let b be the function on 0,1 such that b(0) - 0

and 6(1) - 1. Set

tn = 6(2Yn+,lYn) V(Yn) (30)

+ (1-b(2Yn+I-Yn))[((Yn)+%n(l-O(Yn))•

Now

Pitn -< tIYn) = P[%n < t/(Yn)Yn)(Yn) (31)

+ P{• & [t4(Yn) V[l$(Yn) ]Yl1l0(yn))•

If 0 :ý t K 4(Yn) the second term on the right of (31) is zero

and we have
P{t n K tl %,} - tO o 1 t K O(yn). (32)

If O(Yn) < t K 1 expression (31) becomes

t-O(Y)O(yn) + 9yn (3_%(In)) (33)
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so that
pft. & tlyn) -t (34)

for all to 0_ t 1. Further

Pftrn S n - tlIYI) (35)

= J " .' S" P[R -S tnn n-l' ""*"l3Y1}Pfn-l1n.-2'" ..." 1 Y1)
•n-l--<tn-1 •t

•.. p 1 Y1)

= f f " P[( n <tnIYn)P k-I1 Yn-1 7
•n-1 n-1 1S.,i

=tntnl...tI, O<tn,...,t 1 •1.

Clearly the random variables 10n) are such that tn,•nEl,...

are independent of Ynoyn-.l.. and the family of transformations

Tý(.) as given by (25) are such that Tcn(Yn) = Yn+l with

probability one. Under conditions ( 8) and (9) it follows by

Theorems 2 and 1 that the [Yn) process has a representation of

type (i) in terms of the C sequence. Under monotonioity and

condition (24) Theorems 3 and 1 imply that the [Yn) process has

a representation of type (1) in terms of the E sequence.

An Interpretation. An amusing interpretation of some of these

results can be given in the case of Markov chains. Suppose

there are two stations, the first transmitting messages to the

second. We shall assume that the message that the first station
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wishes to transmit to the second has two states 0 and 1 and is

Marlkov of finite order with stationary transition mechanism.

aowever, there is a possibility that a third party may also

receive the message. This is to be avoided and for that reason

station one decides to encode the message so that the encoded

message appears to be a realization of a sequence of independent

identically distributed random variables. Of course, the proper

decoder has to be supplied to station two. Assuming no distor-

tion in transmission, there will still be some loss of informa-

tion in the decoding and we shall try to get some measure of

this loss of information if the encoding and decoding mechanism

are set up in a manner consistent with the discussion given

earlier.

We first consider the case in which the data which

station one wishes to transmit to the second station is a two

state Markov process (say k ) with transition probability

matrix

1-P P 0 <p pq < (36)

The message that station one wishes to transmit need not be

stationary or have an infinite past. One can just formally

agree that the first Y, is any number between 0 and 1 whose

first entry in its binary expansion is X. Clearly in terms

of (36) the 0 function will be given by
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if~ ~ ifl 2 OSYfl<1

1 + oy a~ Y) (38)

P(n+ n~~

adthe Yn Is are generated recursively from Y 1 by the random

mechanism specified by (37). Station one will then encode the

sequence as.) in the oinn sequence as siven by

qn Yn-,-' + ½"f¥n '- n

trlue n [0ijand ineedn Sf the SYn 1eune

station one transmitted in encoded form. Suppose p < q. If

wn <p it is ceare that Xi -1dnr o vf rib>q then Xio ml -O.

tributed n [0,,(x1 and indep(en)eor (1f0)hand hissenqutnce. inar

remains until the first oiais encountered undershooting p or

overshootin q. Once such a is encountered foI is deteq I

and all the following X.s, n > k+l, are determined by the

following En values, n > k+l. However, the previous values Xn•

n S k,, can not be recovered. Once Ck is observed and XkI
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detemined, the following Xnts are determined recursively by

setting

1 if Xn-O, 0_< n <p

X n l " f o r X n = -, 0 < n < q

0 if Xn=O p < ýn1l

or Xnl, q < •n1l"

The random observations tn that station two receives are, of

course, independent and identically distributed on [0,9]. Thus,

the expected time for the first C n (that is, tk) undershooting

p or overshooting q to be observed is given by

E(k) -=Ekk'l(l-a) - (1-a)" (4o)

with a = q-p. If a is not close to one this mean time will be

moderate in size.

A more general case of interest is that in which station

one wishes to transmit a two state kth order Markov chain [Y.

with stationary transition mechanism, that is, the 0 function

depends on y only through the first k places in the binary

representation of y. For convenience, assume that the range

of $ is bounded away from zero and one. Then

P) -C,... .,) if E _ y< + -1- , (4l)

J-12 =1 2 2

xi - 0,1 and
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tn qP(x1,...,xk). 'f Yn 1 . f

k x k x
and <¥n< E

-242)
1p(x _,. .. ,,,k)+r '-P(x _, ... ',I )) if Yn+1  " n

k x k x
and E j Y. < J-1 2

J-1 2 -2

where the [fn) are independent random variables uniformly dis-

tributed on [0,11 and independent of the [Yn) (or equivalently

[Xn]) sequence. Let

p - min pCXl,,...Jxk)
x, (43)
xl

q =max pXJ k
xi

Again the nls transmitted by station one will be independent

and uniformly distributed on [Oi j]. As before if ýn < p then

X+1 = 1 while if Cn > q Xn+l must be zero. Once one determines

the values of k neighboring X's, say Xn, Xn+ ... ,Xn+k l, all

following X's can be determined by these and tn+k-l'Yn+k' ....

Xn, Xn+ls ... ,Xn+kI will be deternined if none of the values

tn-l''"*Jn+k-2 fall in the range p to q. Let J be the first

time such a run of C values tj-k+l'" ""(J falling outside the

range p to q arise. As before let a - q-p. Then the mean time

for the first such run of k1 values to occur is

(,(j) - a[(i-a)k -. } . (44)
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